Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Dent Mater ; 40(4): 756-763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429216

RESUMO

OBJECTIVE: To evaluate the influence of printing orientation on flexural strength (σf) and elastic modulus (E) of different 3D printing dental restorative resins. METHODS: Bar-shaped specimens (n = 20) were fabricated from two SLA-printed resins (FT- Formlabs Temporary, and FP- Formlabs Permanent) and two DLP-printed resins (DFT- Detax Freeprint Temp, and GCT- GC Temporary) using two building orientations (0º and 90º). The 3D-printed structures were aged (14 d) before submitted to three-point bending in 37ºC distilled water at a crosshead speed of 1.0 ± 0.3 mm/min until fracture to calculate the σf and the E values. The fractured surfaces were evaluated using stereomicroscopy and scanning electron microscopy (SEM) following fractography principles. Data were statistically analyzed using two-way ANOVA and Tukey post-hoc (α = 0.001). RESULTS: FP and FT showed significantly higher E values than DFT and GCT, irrespectively of printing orientation (p < 0.001). There was no statistical difference between the building orientations (0º and 90º) for the mean σf and E values for the resin materials evaluated. Fractographic characteristics were similar for the surface fracture from all the materials evaluated, showing typical brittle fracture behavior. SIGNIFICANCE: Printing orientation did not influence of flexural strength and elastic modulus values for the 3D-printed resin structures evaluated. Surface topography was mostly governed by the 3D printer type.


Assuntos
Resinas Compostas , Materiais Dentários , Materiais Dentários/química , Resinas Compostas/química , Teste de Materiais , Resistência à Flexão , Impressão Tridimensional , Propriedades de Superfície
2.
Int J Biol Macromol ; 260(Pt 1): 129368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219926

RESUMO

The effective implementation of many of the applications of magnetic hydrogels requires the development of innovative systems capable of withstanding a substantial load of magnetic particles to ensure exceptional responsiveness, without compromising their reliability and stability. To address this challenge, double-network hydrogels have emerged as a promising foundation, thanks to their extraordinary mechanical deformability and toughness. Here, we report a semi-interpenetrating polymer networks (SIPNs) approach to create diverse magnetic SIPNs hydrogels based on alginate or cellulose, exhibiting remarkable deformability under certain stresses. Achieving strong responsiveness to magnetic fields is a key objective, and this characteristic is realized by the incorporation of highly magnetic iron microparticles at moderately large concentrations into the polymer network. Remarkably, the SIPNs hydrogels developed in this research accommodate high loadings of magnetic particles without significantly compromising their physical properties. This feature is essential for their use in applications that demand robust responsiveness to applied magnetic fields and overall stability, such as a hydrogel luminescent oxygen sensor controlled by magnetic fields that we designed and tested as proof-of-concept. These findings underscore the potential and versatility of magnetic SIPNs hydrogels based on carbohydrate biopolymers as fundamental components in driving the progress of advanced hydrogels for diverse practical implementations.


Assuntos
Celulose , Hidrogéis , Alginatos , Reprodutibilidade dos Testes , Polímeros , Fenômenos Magnéticos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37924281

RESUMO

Soft actuators are deformable materials that change their dimensions or shape in response to external stimuli. Among the various stimuli, remote magnetic fields are one of the most attractive forms of actuation, due to their ease of use, fast response, and safety in biological systems. Composites of magnetic particles with polymer matrices are the most common materials for magnetic soft actuators. In this paper, we demonstrate the fabrication and actuation of magnetic shape-memory materials based on hydrogels containing field-structured magnetic particles. These actuators are formed by placing the pregel dispersion into a mold of the desired on-field shape and exposing it to a homogeneous magnetic field until the gel point is reached. At this point, the material may be removed from the mold and fully gelled in the desired off-field shape. The resultant magnetic shape-memory material then transitions between these two shapes when it is subjected to successive cycles of a homogeneous magnetic field, acting as a large deformation actuator. For actuators that are planar in the off-field state, this can result in significant bending to return to the on-field state. In addition, it is possible to make shape-memory materials that twist under the application of a magnetic field. For these torsional actuators, both experimental and theoretical results are given.

4.
ACS Appl Mater Interfaces ; 15(27): 32597-32609, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37390355

RESUMO

The development of bio-MOFs or MOF biocomposites through the combination of MOFs with biopolymers offers the possibility of expanding the potential applications of MOFs, making use of more environmentally benign processes and reagents and giving rise to a new generation of greener and more bio-oriented composite materials. Now, with the increasing use of MOFs for biotechnological applications, the development of new protocols and materials to obtain novel bio-MOFs compatible with biomedical or biotechnological uses is needed. Herein, and as a proof of concept, we have explored the possibility of using short-peptide supramolecular hydrogels as media to promote the growth of MOF particles, giving rise to a new family of bio-MOFs. Short-peptide supramolecular hydrogels are very versatile materials that have shown excellent in vitro and in vivo biomedical applications such as tissue engineering and drug delivery vehicles, among others. These peptides self-assemble by noncovalent interactions, and, as such, these hydrogels are easily reversible, being more biocompatible and biodegradable. These peptides can self-assemble by a multitude of stimuli, such as changes in pH, temperature, solvent, adding salts, enzymatic activity, and so forth. In this work, we have taken advantage of this ability to promote peptide self-assembly with some of the components required to form MOF particles, giving rise to more homogeneous and well-integrated composite materials. Hydrogel formation has been triggered using Zn2+ salts, required to form ZIF-8, and formic acid, required to form MOF-808. Two different protocols for the in situ MOF growth have been developed. Finally, the MOF-808 composite hydrogel has been tested for the decontamination of water polluted with phosphate ions as well as for the catalytic degradation of toxic organophosphate methyl paraoxon in an unbuffered solution.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Hidrogéis/química , Sais , Peptídeos , Sistemas de Liberação de Medicamentos
5.
Gels ; 9(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36661805

RESUMO

We investigated the effect of partial dehydration under mechanical stress in the properties of alginate hydrogels. For this aim, we characterized the mechanical properties of the hydrogels under tensile and shear stress, as well as their swelling behavior, macroscopic appearance, and microscopic structure. We found that the processes of dehydration under a mechanical stress were irreversible with fully rehydration being impossible. What is more, these processes gave rise to an enhancement of the mechanical robustness of the hydrogels beyond the effect due to the increase in polymer concentration caused by dehydration. Finally, we analyzed the applicability of these results to alginate-based magnetic hydrogel grippers that bended in response to an applied magnetic field. Remarkably, our study demonstrated that the dehydration of the magnetic hydrogels under compression facilitated their bending response.

6.
Dent Mater ; 39(1): 41-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460577

RESUMO

OBJECTIVE: To investigate the effect of novel polymeric nanoparticles (NPs) doped with dexamethasone (Dex) on viscoelasticity, crystallinity and ultra-nanostructure of the formed hydroxyapatite after NPs dentin infiltration. METHODS: Undoped-NPs, Dex-doped NPs (Dex-NPs) and zinc-doped-Dex-NPs (Zn-Dex-NPs) were tested at dentin, after 24 h and 21 d. A control group without NPs was included. Coronal dentin surfaces were studied by nano-dynamic mechanical analysis measurements, atomic force microscopy, X-ray diffraction and transmission electron microscopy. Mean and standard deviation were analyzed by ANOVA and Student-Newman-Keuls multiple comparisons (p < 0.05). RESULTS: At 21 d of storage time, both groups doped with Dex exhibited the highest complex, storage and loss moduli among groups. Zn-Dex-NPs and Dex-NPs promoted the highest and lowest tan delta values, respectively. Dex-NPs contributed to increase the fibril diameters of dentin collagen over time. Dentin surfaces treated with Zn-Dex-NPs attained the lowest nano-roughness values, provoked the highest crystallinity, and produced the longest and shortest crystallite and grain size. These new crystals organized with randomly oriented lattices. Dex-NPs induced the highest microstrain. Crystalline and amorphous matter was present in the mineral precipitates of all groups, but Zn and Dex loaded NPs helped to increase crystallinity. SIGNIFICANCE: Dentin treated with Zn-Dex-NPs improved crystallographic and atomic order, providing structural stability, high mechanical performance and tissue maturation. Amorphous content was also present, so high hydroxyapatite solubility, bioactivity and remineralizing activity due to the high ion-rich environment took place in the infiltrated dentin.


Assuntos
Nanopartículas , Remineralização Dentária , Zinco , Humanos , Dentina/química , Dexametasona/farmacologia , Dexametasona/análise , Durapatita/farmacologia , Nanopartículas/química , Polímeros , Zinco/farmacologia
7.
ACS Nano ; 16(10): 16941-16953, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36219724

RESUMO

Supramolecular short-peptide assemblies have been widely used for the development of biomaterials with potential biomedical applications. These peptides can self-assemble in a multitude of chiral hierarchical structures triggered by the application of different stimuli, such as changes in temperature, pH, solvent, etc. The self-assembly process is sensitive to the chemical composition of the peptides, being affected by specific amino acid sequence, type, and chirality. The resulting supramolecular chirality of these materials has been explored to modulate protein and cell interactions. Recently, significant attention has been focused on the development of chiral materials with potential spintronic applications, as it has been shown that transport of charge carriers through a chiral environment polarizes the carrier spins. This effect, named chirality-induced spin selectivity or CISS, has been studied in different chiral organic molecules and materials, as well as carbon nanotubes functionalized with chiral molecules. Nevertheless, this effect has been primarily explored in homochiral systems in which the chirality of the medium, and hence the resulting spin polarization, is defined by the chirality of the molecule, with limited options for tunability. Herein, we have developed heterochiral carbon-nanotube-short-peptide materials made by the combination of two different chiral sources: that is, homochiral peptides (l/d) + glucono-δ-lactone. We show that the presence of a small amount of glucono-δ-lactone with fixed chirality can alter the supramolecular chirality of the medium, thereby modulating the sign of the spin signal from "up" to "down" and vice versa. In addition, small amounts of glucono-δ-lactone can even induce nonzero spin polarization in an otherwise achiral and spin-inactive peptide-nanotube composite. Such "chiral doping" strategies could allow the development of complementary CISS-based spintronic devices and circuits on a single material platform.


Assuntos
Nanotubos de Carbono , Nanotubos de Peptídeos , Peptídeos , Solventes/química , Materiais Biocompatíveis
8.
Ultrason Sonochem ; 88: 106096, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35868210

RESUMO

Sonocrystallization implies the application of ultrasound radiation to control the nucleation and crystal growth depending on the actuation time and intensity. Its application allows to induce nucleation at lower supersaturations than required under standard conditions. Although extended in inorganic and organic crystallization, it has been scarcely explored in protein crystallization. Now, that industrial protein crystallization is gaining momentum, the interest on new ways to control protein nucleation and crystal growth is advancing. In this work we present the development of a novel ultrasound bioreactor to study its influence on protein crystallization in agarose gel. Gel media minimize convention currents and sedimentation, favoring a more homogeneous and stable conditions to study the effect of an externally generated low energy ultrasonic irradiation on protein crystallization avoiding other undesired effects such as temperature increase, introduction of surfaces which induce nucleation, destructive cavitation phenomena, etc. In-depth statistical analysis of the results has shown that the impact of ultrasound in gel media on crystal size populations are statistically significant and reproducible.


Assuntos
Hidrogéis , Muramidase , Ondas Ultrassônicas , Cristalização/métodos , Muramidase/química , Proteínas/química
9.
ACS Appl Mater Interfaces ; 13(42): 49692-49704, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34645258

RESUMO

The inclusion of magnetic nanoparticles (MNP) in a hydrogel matrix to produce magnetic hydrogels has broadened the scope of these materials in biomedical research. Embedded MNP offer the possibility to modulate the physical properties of the hydrogel remotely and on demand by applying an external magnetic field. Moreover, they enable permanent changes in the mechanical properties of the hydrogel, as well as alterations in the micro- and macroporosity of its three-dimensional (3D) structure, with the associated potential to induce anisotropy. In this work, the behavior of biocompatible and biodegradable hydrogels made with Fmoc-diphenylalanine (Fmoc-FF) (Fmoc = fluorenylmethoxycarbonyl) and Fmoc-arginine-glycine-aspartic acid (Fmoc-RGD) short peptides to which MNP were incorporated was studied in detail with physicochemical, mechanical, and biological methods. The resulting hybrid hydrogels showed enhance mechanical properties and withstood injection without phase disruption. In mice, the hydrogels showed faster and improved self-healing properties compared to their nonmagnetic counterparts. Thanks to these superior physical properties and stability during culture, they can be used as 3D scaffolds for cell growth. Additionally, magnetic short-peptide hydrogels showed good biocompatibility and the absence of toxicity, which together with their enhanced mechanical stability and excellent injectability make them ideal biomaterials for in vivo biomedical applications with minimally invasive surgery. This study presents a new approach to improving the physical and mechanical properties of supramolecular hydrogels by incorporating MNP, which confer structural reinforcement and stability, remote actuation by magnetic fields, and better injectability. Our approach is a potential catalyst for expanding the biomedical applications of supramolecular short-peptide hydrogels.


Assuntos
Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Nanopartículas de Magnetita/química , Peptídeos/farmacologia , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Hidrogéis/administração & dosagem , Hidrogéis/química , Injeções Subcutâneas , Substâncias Macromoleculares/administração & dosagem , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Osteoblastos/efeitos dos fármacos , Peptídeos/administração & dosagem , Peptídeos/química
10.
Dent Mater ; 37(11): 1698-1713, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34544591

RESUMO

OBJECTIVE: To investigate the effect of novel polymeric nanoparticles (NPs) doped with melatonin (ML) on nano-hardness, crystallinity and ultrastructure of the formed hydroxyapatite after endodontic treatment. METHODS: Undoped-NPs and ML-doped NPs (ML-NPs) were tested at radicular dentin, after 24 h and 6 m. A control group without NPs was included. Radicular cervical and apical dentin surfaces were studied by nano-hardness measurements, X-ray diffraction and transmission electron microscopy. Mean and standard deviation were analyzed by ANOVA and Student-Newman-Keuls multiple comparisons (p < 0.05). RESULTS: Cervical dentin treated with undoped NPs maintained its nano-hardness values after 6 m of storage being [24 h: 0.29 (0.01); 6 m: 0.30 (0.02) GPa], but it decreased at apical dentin [24 h: 0.36 (0.01); 6 m: 0.28 (0.02) GPa]. When ML-NPs were used, nano-hardness was similar over time [24h: 0.31 (0.02); 6 m: 0.28 (0.03) GPa], at apical dentin. Root dentin treated with ML-NPs produced, in general, high crystallinity of new minerals and thicker crystals than those produced in the rest of the groups. After 6 m, crystals became organized in randomly oriented polyhedral, square polygonal block-like apatite or drop-like apatite polycrystalline lattices when ML-NPs were used. Undoped NPs generated poor crystallinity, with preferred orientation of small crystallite and increased microstrain. SIGNIFICANCE: New polycrystalline formations encountered in dentin treated with ML-NPs may produce structural dentin stability and high mechanical performance at the root. The decrease of mechanical properties over time in dentin treated without NPs indicates scarce remineralization potential, dentin demineralization and further potential degradation. The amorphous stage may provide high hydroxyapatite solubility and remineralizing activity.


Assuntos
Melatonina , Nanopartículas , Apatitas , Dentina , Humanos , Polímeros
11.
Philos Trans A Math Phys Eng Sci ; 379(2205): 20200302, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34275360

RESUMO

In this paper, we study the shear-induced flow of magneto-polymer composites, consisting of dispersions of magnetic particles in solutions of polymers, as a competition between the colloidal forces amid particles and their bulk transport induced by the hydrodynamic forces. For this aim, we analyse the role of different experimental parameters. Firstly, by using only solutions of a well-known anionic polymer (sodium alginate), we provoke a moderate hindering of particle movement, but keeping the liquid-like state of the samples. On the contrary, a gel-like behaviour is conferred to the samples when a cationic polymer (chitosan) is additionally added, which further reduces the particle movement. We analyse the effect of an applied magnetic field, which is opposed to particle transport by hydrodynamic forces, by inducing magnetic attraction between the particles. We perform the analysis under both stationary and oscillatory shear. We show that by using dimensionless numbers the differences between samples and experimental conditions are emphasized. In all cases, as expected, the transport of particles driven by bulk hydrodynamic forces dominates at high values of the shear rate. This article is part of the theme issue 'Transport phenomena in complex systems (part 1)'.

12.
ACS Appl Mater Interfaces ; 13(10): 11672-11682, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33661596

RESUMO

Protein therapeutics have a major role in medicine in that they are used to treat diverse pathologies. Their three-dimensional structures not only offer higher specificity and lower toxicity than small organic compounds but also make them less stable, limiting their in vivo half-life. Protein analogues obtained by recombinant DNA technology or by chemical modification and/or the use of drug delivery vehicles has been adopted to improve or modulate the in vivo pharmacological activity of proteins. Nevertheless, strategies to improve the shelf-life of protein pharmaceuticals have been less explored, which has challenged the preservation of their activity. Herein, we present a methodology that simultaneously increases the stability of proteins and modulates the release profile, and implement it with human insulin as a proof of concept. Two novel thermally stable insulin composite crystal formulations intended for the therapeutic treatment of diabetes are reported. These composite crystals have been obtained by crystallizing insulin in agarose and fluorenylmethoxycarbonyl-dialanine (Fmoc-AA) hydrogels. This process affords composite crystals, in which hydrogel fibers are occluded. The insulin in both crystalline formulations remains unaltered at 50 °C for 7 days. Differential scanning calorimetry, high-performance liquid chromatography, mass spectrometry, and in vivo studies have shown that insulin does not degrade after the heat treatment. The nature of the hydrogel modifies the physicochemical properties of the crystals. Crystals grown in Fmoc-AA hydrogel are more stable and have a slower dissolution rate than crystals grown in agarose. This methodology paves the way for the development of more stable protein pharmaceuticals overcoming some of the existing limitations.


Assuntos
Hidrogéis/química , Hipoglicemiantes/química , Insulina/química , Animais , Cristalização/métodos , Liberação Controlada de Fármacos , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Masculino , Peptídeos/química , Estabilidade Proteica , Ratos Wistar
13.
Mater Sci Eng C Mater Biol Appl ; 118: 111476, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255055

RESUMO

Novel artificial tissues with potential usefulness in local-based therapies have been generated by tissue engineering using magnetic-responsive nanoparticles (MNPs). In this study, we performed a comprehensive in vivo characterization of bioengineered magnetic fibrin-agarose tissue-like biomaterials. First, in vitro analyses were performed and the cytocompatibility of MNPs was demonstrated. Then, bioartificial tissues were generated and subcutaneously implanted in Wistar rats and their biodistribution, biocompatibility and functionality were analysed at the morphological, histological, haematological and biochemical levels as compared to injected MNPs. Magnetic Resonance Image (MRI), histology and magnetometry confirmed the presence of MNPs restricted to the grafting area after 12 weeks. Histologically, we found a local initial inflammatory response that decreased with time. Structural, ultrastructural, haematological and biochemical analyses of vital organs showed absence of damage or failure. This study demonstrated that the novel magnetic tissue-like biomaterials with improved biomechanical properties fulfil the biosafety and biocompatibility requirements for future clinical use and support the use of these biomaterials as an alternative delivery route for magnetic nanoparticles.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Animais , Materiais Biocompatíveis/farmacologia , Ratos , Ratos Wistar , Distribuição Tecidual , Engenharia Tecidual
14.
Carbohydr Polym ; 247: 116747, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829864

RESUMO

Iron/silica core-shell microparticles (IMPs) were functionalized by different functional groups including amine, glycidoxy, phenyl, and thiocyanate. Many of the IMPs modifications are reported for the first time. The resulting surface chemistry turned out to affect the properties of magnetic alginate hydrogels fabricated from sodium alginate and dispersed IMPs. Differences in magnetorheological properties of the obtained magnetic hydrogels can be at least partially attributed to the interactions between alginate and surface functionalities of IMPs. Density Functional Theory (DFT) calculations were carried out to get detailed insight into those interactions in order to link them with the observed macroscopic properties of the obtained hydrogels. For example, amine groups on the IMPs surface resulted in well-formed hydrogels while the presence of thiocyanate or phenyl groups - in poorly formed ones. This observation can be used for tuning the properties of various carbohydrate-based hydrogels.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32612984

RESUMO

Generation of biocompatible and biomimetic tissue-like biomaterials is crucial to ensure the success of engineered substitutes in tissue repair. Natural biomaterials able to mimic the structure and composition of native extracellular matrices typically show better results than synthetic biomaterials. The aim of this study was to perform an in vivo time-course biocompatibility analysis of fibrin-agarose tissue-like hydrogels at the histological, imagenological, hematological, and biochemical levels. Tissue-like hydrogels were produced by a controlled biofabrication process allowing the generation of biomechanically and structurally stable hydrogels. The hydrogels were implanted subcutaneously in 25 male Wistar rats and evaluated after 1, 5, 9, and 12 weeks of in vivo follow-up. At each period of time, animals were analyzed using magnetic resonance imaging (MRI), hematological analyses, and histology of the local area in which the biomaterials were implanted, along with major vital organs (liver, kidney, spleen, and regional lymph nodes). MRI results showed no local or distal alterations during the whole study period. Hematology and biochemistry showed some fluctuation in blood cells values and in some biochemical markers over the time. However, these parameters were progressively normalized in the framework of the homeostasis process. Histological, histochemical, and ultrastructural analyses showed that implantation of fibrin-agarose scaffolds was followed by a progressive process of cell invasion, synthesis of components of the extracellular matrix (mainly, collagen) and neovascularization. Implanted biomaterials were successfully biodegraded and biointegrated at 12 weeks without any associated histopathological alteration in the implanted zone or distal vital organs. In summary, our in vivo study suggests that fibrin-agarose tissue-like hydrogels could have potential clinical usefulness in engineering applications in terms of biosafety and biocompatibility.

16.
Philos Trans A Math Phys Eng Sci ; 378(2171): 20190254, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32279633

RESUMO

Even in the absence of cross-linking, at large enough concentration, long polymer strands have a strong influence on the rheology of aqueous systems. In this work, we show that solutions of medium molecular weight (120 000-190 000 g mol-1) alginate polymer retained a liquid-like behaviour even for concentrations as large as 20% w/v. On the contrary, solutions of alginate polymer of larger (and also polydisperse) molecular weight (up to 600 000 g mol-1) presented a gel-like behaviour already at concentrations of 7% w/v. We dispersed micrometre-sized iron particles at a concentration of 5% v/v in these solutions, which resulted in either stable magnetic fluids or gels, depending on the type of alginate polymer employed (medium or large molecular weight, respectively). These magneto-polymer composites presented a shear-thinning behaviour that allowed injection through a syringe and recovery of the original properties afterwards. More interestingly, application of a magnetic field resulted in the formation of particle clusters elongated along the field direction. The presence of these clusters intensely affected the rheology of the systems, allowing a reversible control of their stiffness. We finally developed theoretical modelling for the prediction of the magnetic-sensitive rheological properties of these magneto-polymer colloids. This article is part of the theme issue 'Patterns in soft and biological matters'.

17.
Philos Trans A Math Phys Eng Sci ; 378(2171): 20190255, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32279638

RESUMO

Magnetic hydrogels (ferrogels) are soft materials with a wide range of applications, especially in biomedicine because (i) they can be provided with the required biocompatibility; (ii) their heterogeneous structure allows their use as scaffolds for tissue engineering; (iii) their mechanical properties can be modified by changing different design parameters or by the action of magnetic fields. These characteristics confer them unique properties for acting as patterns that mimic the architecture of biological systems. In addition, and (iv) given their high porosity and aqueous content, ferrogels can be loaded with drugs and guided towards specific targets for local (non-systemic) pharmaceutical treatments. The ferrogels prepared in this work contain magnetic particles obtained by precipitation of magnetite nanoparticles onto the porous surface of bentonite platelets. Then, the particles were functionalized by adsorption of alginate molecules and dispersed in an aqueous solution of sodium alginate. Finally, the gelation was promoted by cross-linking the alginate molecules with Ca2+ ions. The viscoelastic properties of the ferrogels were measured in the absence/presence of external magnetic fields, showing that these ferrogels exhibited a strong enough magnetorheological effect. This behaviour is explained considering the field-induced strengthening of the heterogeneous (particle-polymer) network generated inside the ferrogel. This article is part of the theme issue 'Patterns in soft and biological matters'.

18.
J Mech Behav Biomed Mater ; 104: 103619, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174386

RESUMO

The encapsulation of cells into biopolymer matrices enables the preparation of engineered substitute tissues. Here we report the generation of novel 3D magnetic biomaterials by encapsulation of magnetic nanoparticles and human hyaline chondrocytes within fibrin-agarose hydrogels, with potential use as articular hyaline cartilage-like tissues. By rheological measurements we observed that, (i) the incorporation of magnetic nanoparticles resulted in increased values of the storage and loss moduli for the different times of cell culture; and (ii) the incorporation of human hyaline chondrocytes into nonmagnetic and magnetic fibrin-agarose biomaterials produced a control of their swelling capacity in comparison with acellular nonmagnetic and magnetic fibrin-agarose biomaterials. Interestingly, the in vitro viability and proliferation results showed that the inclusion of magnetic nanoparticles did not affect the cytocompatibility of the biomaterials. What is more, immunohistochemistry showed that the inclusion of magnetic nanoparticles did not negatively affect the expression of type II collagen of the human hyaline chondrocytes. Summarizing, our results suggest that the generation of engineered hyaline cartilage-like tissues by using magnetic fibrin-agarose hydrogels is feasible. The resulting artificial tissues combine a stronger and stable mechanical response, with promising in vitro cytocompatibility. Further research would be required to elucidate if for longer culture times additional features typical of the extracellular matrix of cartilage could be expressed by human hyaline chondrocytes within magnetic fibrin-agarose hydrogels.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Células Cultivadas , Condrócitos , Fibrina , Humanos , Hidrogéis , Fenômenos Magnéticos , Sefarose
19.
J Mech Behav Biomed Mater ; 103: 103606, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32090933

RESUMO

The effectiveness of novel polymeric nanoparticles (NPs) application in reducing dentin permeability and facilitating dentin remineralization after endodontic treatment was evaluated. The effect of undoped NPs, zinc, calcium and doxycycline-doped NPs (Zn-NPs, Ca-NPs and D-NPs, respectively) was tested in radicular dentin. A control group without NPs was included. Radicular dentin was assessed for fluid filtration. Dentin remineralization was analyzed by scanning and transmission electron microscopy, energy-dispersive analysis, AFM, Young's modulus (Ei), Nano DMA, Raman, and X-Ray Diffraction analysis. Ca-NPs and Zn-NPs treated dentin exhibited the lowest microleakage with hermetically sealed dentinal tubules and a zinc-based salt generation onto dentin. Zn-NPs favored crystallinity and promoted the highest Ei and functional remineralization at the apical dentin, generating differences between the values of complex modulus among groups. Ca-NPs produced closure of tubules and porosities at the expense of a relative mineral amorphization, without creating zones of stress concentration. The highest sealing efficacy was obtained in Zn-NPs-treated samples, along with the highest values of Young's modulus and dentin mineralization. These high values of Ei were obtained by closing voids, cracks, pores and tubules, and by strengthening the root dentin. When using undoped NPs or Ca-NPs, deposition of minerals occurred, but radicular dentin was not mechanically reinforced. Therefore, application of Zn-NPs in endodontically treated teeth previous to the canal filling is encouraged.


Assuntos
Dentina , Nanopartículas , Microscopia Eletrônica de Varredura , Polímeros , Raiz Dentária , Zinco
20.
Dent Mater ; 36(1): 167-178, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31818525

RESUMO

OBJECTIVE: To investigate crystallinity and ultrastructure of the formed hydroxyapatite at radicular cervical and apical dentin after being treated with three different canal sealers. METHODS: Cervical and apical root dentin surfaces were treated with two experimental hydroxyapatite-based sealers, containing sodium hydroxide (calcypatite) or zinc oxide (oxipatite) and an epoxy resin-based canal sealer (AH Plus); gutta-percha without sealer was included as control. Dentin surfaces were studied by X-ray diffraction and transmission electron microscopy through selected area diffraction and bright-field imaging after 24h and 12m of storage. RESULTS: Root cervical dentin treated with calcypatite and oxipatite produced poor crystallinity of new minerals, wide amorphous phase and non-stoichiometry. Reflections at the 002 plane and the corresponding diffraction rings attained lower values in the Scherrer equation and the Scherrer-Wilson equation in samples treated with both HAp-based sealers than in specimens without sealer or with AH Plus. At root cervical dentin treated with calcypatite, shorter and wider crystallite size formations and lower crystals grain size were found, if compared to those encountered at oxipatite treated dentin. Oxipatite attained improved crystallographic atomic order and less structural variation in both distances and angles. Apical dentin treated with oxipatite attained preferred grain orientation with polycrystalline lattices. SIGNIFICANCE: The immature crystallites formed in dentin treated with calcypatite and oxipatite will account for high hydroxyapatite solubility and remineralizing activity. New polycrystalline formations encountered in apical dentin treated with oxipatite may also produce high mechanical performance.


Assuntos
Guta-Percha , Materiais Restauradores do Canal Radicular , Apatitas , Cavidade Pulpar , Dentina , Resinas Epóxi , Hidroxiapatitas , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...